Three-dimensional Dynamic Contrast-enhanced US Imaging for Early Antiangiogenic Treatment Assessment in a Mouse Colon Cancer Model

Huaijun Wang, MD, PhD
Dimitre Hristov, PhD
Jiale Qin, MD
Lu Tian, PhD
Jürgen K. Willmann, MD

Purpose: To evaluate feasibility and reproducibility of three-dimensional (3D) dynamic contrast material–enhanced (DCE) ultrasonographic (US) imaging by using a clinical matrix array transducer to assess early antiangiogenic treatment effects in human colon cancer xenografts in mice.

Materials and Methods: Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. Three-dimensional DCE US imaging with two techniques (bolus and destruction-replenishment) was performed in human colon cancer xenografts (n = 38) by using a clinical US system and transducer. Twenty-one mice were imaged twice to assess reproducibility. Seventeen mice were scanned before and 24 hours after either antiangiogenic (n = 9) or saline-only (n = 8) treatment. Data sets of 3D DCE US examinations were retrospectively segmented into consecutive 1-mm imaging planes to simulate two-dimensional (2D) DCE US imaging. Six perfusion parameters (peak enhancement [PE], area under the time-intensity curve [AUC], time to peak [TTP], relative blood volume [rBV], relative blood flow [rBF], and blood flow velocity) were measured on both 3D and 2D data sets. Percent area of blood vessels was quantified ex vivo with immunofluorescence. Statistical analyses were performed with the Wilcoxon rank test by calculating intraclass correlation coefficients and by using Pearson correlation analysis.

Results: Reproducibility of both 3D DCE US imaging techniques was good to excellent (intraclass correlation coefficient, 0.73–0.86). PE, AUC, rBV, and rBF significantly decreased (P ≤ .04) in antiangiogenic versus saline-treated tumors. rBV (r = 0.74; P = .06) and rBF (r = 0.85; P = .02) correlated with ex vivo percent area of blood vessels, although the statistical significance of rBV was not reached, likely because of small sample size. Overall, 2D DCE-US overestimated and underestimated treatment effects from up to 125-fold to 170-fold compared with 3D DCE US imaging. If the central tumor plane was assessed, treatment response was underestimated up to threefold or overestimated up to 57-fold on 2D versus 3D DCE US images.

Conclusion: Three-dimensional DCE US imaging with a clinical matrix array transducer is feasible and reproducible to assess tumor perfusion in human colon cancer xenografts in mice and allows for assessment of early treatment response after antiangiogenic therapy.
Colorectal cancer is the fourth most common malignancy and the second leading cause of cancer-related deaths in the United States (1). It is estimated that approximately 140,000 new cases of colorectal cancer will be diagnosed in the United States and more than 50,000 patients will die of the disease in 2014 (2). Liver metastases are present in approximately 15%–25% of patients at diagnosis and develop in about 60% of patients during the course of the disease (3).

Surgical resection is currently the standard of care for eligible patients with liver metastases from colon cancer. Chemotherapy is used preoperatively in patients with resectable and unresectable colorectal cancer liver metastases. In the former group, this confers a potential survival advantage. In the latter group, the initially unresectable colorectal cancer liver metastases can be successfully downsized in up to 40% of patients (4). The addition of a targeted agent, such as cetuximab (a monoclonal antibody that targets and inhibits the epidermal growth factor receptor) or bevacizumab (a monoclonal antibody that inhibits vascular endothelial growth factor A), can improve the efficacy of chemotherapy (5,6).

Medical imaging plays an important role in the evaluation of the response of patients with colorectal liver metastases who undergo chemotherapy. In particular, Response Evaluation Criteria in Solid Tumors is used to standardize tumor measurements in clinical care and trials. However, many targeted therapies, including bevacizumab, result in cytostatic rather than cytotoxic effects and lead to little change in tumor size despite substantial clinical benefit for the patient (7). Therefore, there is a critical need to develop non-invasive functional or molecular imaging methods to assess response to therapy and for earlier identification of responders from nonresponders. Dynamic contrast material–enhanced (DCE) computed tomographic (CT) imaging were shown to depict therapy–induced changes in tumor perfusion before there were changes in lesion size (8–11). While promising, DCE CT imaging is associated with ionizing radiation, and the use of contrast agents for DCE US imaging can be safely administered in patients with renal insufficiency because they can be safely administered in patients with renal insufficiency because they do not show any nephrotoxic effects (12,13). Two-dimensional (2D) DCE US was correlated with changes in perfusion during the first 2 weeks of treatment with the antiangiogenic agent sunitinib and subsequent overall survival in patients with metastatic renal cell carcinoma (14).

However, heterogeneity in tumor vascularity that is secondary to focal

Advances in Knowledge

- Three-dimensional (3D) dynamic contrast–enhanced (DCE) US imaging with both the bolus and destruction–replenishment acquisition techniques is feasible and reproducible (intraclass correlation coefficient, 0.73–0.86) to assess tumor perfusion in a human colon cancer xenograft in mice.

- 3D DCE US imaging that uses both acquisition techniques allows assessment of early treatment response after antiangiogenic therapy in human colon cancer xenografts.

- The in vivo perfusion parameters relative blood volume ($r = 0.74$; $P = .06$) and relative blood flow ($r = 0.85$; $P = .02$) quantitatively correlate with the percent area of blood vessels as assessed ex vivo by immunofluorescence.

- Depending on the perfusion parameter, antiangiogenic treatment effects can be overestimated or underestimated from up to 125-fold to 170-fold on two-dimensional (2D) DCE US imaging compared with 3D DCE US imaging.

- DCE ultrasonographic (US) imaging is an attractive complementary imaging modality for evaluation of response to targeted treatment in organs that are accessible for US imaging, such as the liver. It has excellent temporal resolution (which allows for tracking of DCE), is widely available, does not expose patients to radiation, and can be performed at the bedside in patients with substantial comorbidities. Furthermore, microbubbles used as contrast agents for DCE US imaging can be safely administered in patients with renal insufficiency because they do not show any nephrotoxic effects (12,13). Two-dimensional (2D) DCE US was correlated with changes in perfusion during the first 2 weeks of treatment with the antiangiogenic agent sunitinib and subsequent overall survival in patients with metastatic renal cell carcinoma (14).

Implication for Patient Care

- The capabilities of 3D imaging may further expand the role of DCE US imaging for management of cancer, particularly to more accurately monitor molecularly targeted therapies compared with current 2D DCE US imaging.
areas of necrosis, hemorrhage, or hypoxia can lead to substantial sampling errors with 2D DCE US imaging (15). Three-dimensional (3D) DCE US imaging could more accurately measure tumor perfusion for the entire target lesion, which is critically needed for longitudinal monitoring of treatment response in cancer.

The purpose of our study was to evaluate feasibility and reproducibility of 3D DCE US imaging by using a clinical matrix array transducer to assess early antiangiogenic treatment effects in human colon cancer xenografts in mice.

Materials and Methods

Mouse Tumor Model

This study was approved by the Institutional Administrative Panel on Laboratory Animal Care. Thirty-eight female nude mice (Charles River Laboratories, Hollister, Calif; 6–8 weeks old; body weight, 20–25 g) were used for the human colon cancer xenograft model. Human LS174T colon adenocarcinoma cells (ATCC, Manassas, Va) were cultured in minimum essential medium (Gibco; Life Technologies, Grand Island, NY) supplemented with 10% fetal bovine serum. At 70%–80% confluence, the tumor cells were given trypsin and 3 × 10^6 cells suspended in 50 μl of a basement membrane preparation (BD Matrigel; BD Biosciences, San Jose, Calif) were injected subcutaneously on the lower hind limb. Tumors were imaged 7–14 days after tumor cell injection when the tumors had reached 1–2 cm in maximum diameter (mean size, 1.6 cm), which was assessed by using an electronic caliper available on the US system.

Three-dimensional DCE US Imaging in Vivo

Imaging protocol.—All imaging experiments were performed on mice with gas anesthesia (2% isoflurane in room air, administered at 2 L/min). Mice were placed prone on a heated imaging stage. Cannulation was performed in the tail vein with a 27-gauge needle (Vevo Micromarker; VisualSonics, Toronto, Canada) attached to an injection pump (Kent Scientific, Torrington, Conn). Three-dimensional DCE US was performed with a clinical US system (iU22 Xmatrix; Philips Healthcare, Andover, Mass) equipped with a clinical matrix array transducer (X6-1, Philips Healthcare; center frequency, 3.2 MHz). The transducer was held in a fixed position by using a clamp and was coupled to the tumor with a warmed custom gel standoff for US imaging, which brought the tumor beyond the near field zone of the transducer. The distance between the transducer and the center of the tumor was set at 4 cm. The following imaging parameters were kept constant for all imaging experiments in all mice: voxel dimensions, 320 × 110 × 210 μm^3; focal length, 40 mm; mechanical index, 0.05; dynamic range, 40 dB; frame rate, 1 Hz; power modulation contrast imaging mode. Commercially available contrast microbubbles (mean size, 2.6 μm; range, 2.3–2.9 μm) with a perfluororbutane gas core encapsulated by a phospholipid shell (Vevo Micromarker; VisualSonics, Toronto, Canada) were used for all DCE US experiments.

In each mouse, two well-established DCE US acquisition techniques were used to acquire 3D DCE US imaging data sets. The first method (henceforth called bolus DCE US imaging) is based on the wash-in and washout kinetics of microbubbles after bolus injection (16). First, B-mode images were acquired to outline the tumor. Then, image acquisition was switched to power modulation contrast imaging mode and 5 × 10^7 microbubbles (100 μL) were injected within 5 seconds at a constant injection rate by using the injection pump. Data sets were acquired continuously for 4 minutes in each mouse.

The second method (henceforth called destruction-replenishment DCE US) leveraged the ability of US imaging to manipulate the contrast agent itself (16). Microbubbles were continuously injected at a constant injection rate of 2 × 10^7 microbubbles per minute (40 μL/min) by using the injection pump. After 4 minutes and when steady-state enhancement was reached, five high-power destructive pulses (mechanical index, 0.77) within 5 seconds were applied to clear microbubbles from the entire tumor volume. After microbubble destruction, data were acquired continuously over a 3-minute interval.

In all mice, both DCE US acquisition techniques were applied in the same imaging session and the order was randomized. To allow clearance of microbubbles from previous injections, a waiting time of at least 30 minutes was applied between each of the two DCE US acquisition techniques (17–19). All mice tolerated the repetitive injections of contrast agents well.

Evaluation of reproducibility of 3D DCE US imaging.—In 21 tumor-bearing mice (group 1) both DCE US acquisition techniques were performed twice (Fig 1). The four different contrast agent injections were separated by a waiting time of at least 30 minutes to allow clearance of microbubbles from previous injections (17–19). All mice tolerated the four repetitive injections of contrast agents well.

Evaluation of antiangiogenic treatment effect with 3D DCE US imaging.—In 17 tumor-bearing mice, the effect of antiangiogenic treatment versus saline treatment on 3D DCE US imaging data sets was assessed. A single dose of the antiangiogenic agent bevacizumab (10 mg/kg; Avastin, Genentech, South San Francisco, Calif) was intravenously injected in nine mice (group 2), and saline only was injected in eight control mice (group 3). All mice underwent DCE US imaging by using both acquisition techniques as described above at day 0 before the treatment and at 24 hours after treatment (Fig 1). After imaging, all animals were humanely killed and tumor tissues were removed for ex vivo analysis.

Analysis of 3D DCE Datasets

Image analysis was performed by one reader (H.W., a radiologist with 3 years of experience) in random order and blinded to the treatments (antiangiogenic vs saline only) by using in-house custom software (Mevislab; Mevis Medical Solutions, Bremen, Germany) (20). A volume of interest was delineated by
EXPERIMENTAL STUDIES: Three-dimensional Dynamic Contrast-enhanced US Imaging for Treatment Assessment

EXPERIMENTAL STUDIES: Three-dimensional Dynamic Contrast-enhanced US Imaging for Treatment Assessment Wang et al

For the destruction-replenishment DCE US imaging technique, time-intensity curves were fitted with a destruction-replenishment model (24) and the fitted curves were used to calculate relative blood volume (rBV, au), relative blood flow (rBF, au), and blood flow velocity (sec\(^{-1}\)) (15,24,25). The treatment effect on 3D DCE US imaging was quantified as the ratios of PE, AUC, TTP, rBV, rBF, and blood flow velocity after and before antiangiogenic therapy in both treatment and control groups.

Comparison between 2D and 3D DCE US Acquisition Techniques

A retrospective analysis of 3D data sets into multiple consecutive 2D imaging data sets was performed to assess discrepancies in quantification of antiangiogenic treatment effects based on 3D versus 2D imaging. For this purpose, 3D data sets were segmented into multiple consecutive 1-mm-thick imaging planes (the number in each tumor was dependent on the maximum tumor diameter). All perfusion parameters, including PE, AUC, TTP, rBV, rBF, and blood flow velocity were then measured both before and after antiangiogenic treatment by drawing a region of interest that outlined the tumor boundaries in 2D. To assess the degree to which a single 1-mm imaging plane could misrepresent antiangiogenic treatment response of tumors compared with 3D imaging of the entire tumor volume, ratios of imaging signals after and before antiangiogenic treatment obtained from each 1-mm imaging plane were calculated on each 2D imaging plane and compared with the ratios of imaging signals after and before treatment obtained from 3D imaging. For central 2D imaging planes, the percent differences between 2D and 3D ratios were further calculated.

Analysis of Tumors ex Vivo

Before tumor excision, all tumors were marked on the cranial and caudal edges used to generate time-intensity curves for the quantification of perfusion.

For the bolus DCE US imaging technique, time-intensity curves were fitted with a lognormal function model (21) and fitted curves were used to calculate the following perfusion parameters, as previously described (16,22,23): (a) peak enhancement (PE, related to covering the entire tumor on the 3D B-mode images viewed on axial, sagittal, and coronal imaging planes. US voxel values in power modulation contrast agent–enhanced imaging mode were linearized with a transformation function and a compression parameter provided by the equipment manufacturer. This volume of interest was subsequently used to generate time-intensity curves for the quantification of perfusion.

For the bolus DCE US imaging technique, time-intensity curves were fitted with a lognormal function model (21) and fitted curves were used to calculate the following perfusion parameters, as previously described (16,22,23): (a) peak enhancement (PE, related to covering the entire tumor on the 3D B-mode images viewed on axial, sagittal, and coronal imaging planes. US voxel values in power modulation contrast agent–enhanced imaging mode were linearized with a transformation function and a compression parameter provided by the equipment manufacturer. This volume of interest was subsequently used to generate time-intensity curves for the quantification of perfusion.

For the bolus DCE US imaging technique, time-intensity curves were fitted with a lognormal function model (21) and fitted curves were used to calculate the following perfusion parameters, as previously described (16,22,23): (a) peak enhancement (PE, related to covering the entire tumor on the 3D B-mode images viewed on axial, sagittal, and coronal imaging planes. US voxel values in power modulation contrast agent–enhanced imaging mode were linearized with a transformation function and a compression parameter provided by the equipment manufacturer. This volume of interest was subsequently used to generate time-intensity curves for the quantification of perfusion.
(elevation direction from cranial to caudal in US imaging) and at the dorsal and left tumor surfaces by using dyes with four different colors (Davidson Marking System; Bradley Products, Bloomington, Minn). This allowed for the preservation of the spatial orientation of tumor tissues during tissue fixation and sectioning.

Tumor tissues were fixed in 4% paraformaldehyde overnight at 4°C and then cryopreserved in a 30% sucrose solution. Samples were placed in optimal cutting temperature media (Tissue-Tek; Sakura Finetek, Torrance, Calif), frozen, and then sectioned into multiple 1-mm blocks by using a cryomicrotome to allow approximate alignment with the 1-mm imaging planes reconstructed from the 3D imaging data sets. Out of each 1-mm tissue block, a representative 10-μm section from the center of the block was selected for quantification of percent area of blood vessels.

Blood vessels in tumors were made visible with standard immunofluorescence procedures. In brief, sections were incubated in phosphate-buffered saline for 10 minutes to remove remaining optimal cutting temperature media and made permeable for 10 minutes in 0.5% octoxynol-9 (Triton X-100; Sigma; St Louis, Mo) in phosphate-buffered saline. Sections were blocked in a solution that contained 3% bovine serum albumin (Sigma), 3% goat serum (Sigma), and 3% donkey serum (Sigma) for 30 minutes at room temperature before incubation with primary antibody ratio of 1:250 rat antimon (CD31; eBioscience, San Jose, Calif). Primary antibody was made visible with a 1:250 ratio of antirat antibody (Alexafluor488 donkey antirat IgG; Invitrogen, Grand Island, NY). Samples were mounted in an aqueous mounting media (Biotigex, San Ramon, Calif), and fluorescent images were acquired by using a microscope (LSM 510 Meta Confocal Microscope; Carl Zeiss, Bernried, Germany) attached to a digital camera (Axiocam MRc; Carl Zeiss). Multiple single confocal sections (10 μm) were collected and displayed by using a magnification objective of 20×. By using software (ImageJ; National Institutes of Health, Bethesda, Md), the percentage area of blood vessels per section was quantified as the average value from at least five randomly selected fields of view (single field of view area, 0.19 mm²) obtained from the different 1-mm tumor sections. The overall mean percentage area of blood vessels per whole tumor volume was calculated by averaging the respective values obtained from all consecutive 1-mm sections per tumor.

Statistical Analysis

To measure reproducibility of the two DCE acquisition techniques, intraclass correlation coefficients (ICCs) and 95% confidence intervals were calculated. An ICC of 0–0.20 indicated no agreement; 0.21–0.40, poor agreement; 0.41–0.60, moderate agreement; 0.61–0.80, good agreement; and greater than 0.80, excellent agreement (26). Changes in PE, AUC, TTP, rBV, and blood flow velocity at 24 hours after either antiangiogenic or saline-only treatment were compared by using a two-sample Wilcoxon rank test. To show imaging plane-to-plane variability in simulated 2D imaging, the coefficient of variation was calculated as the ratio between the standard deviation and the mean value of imaging signals from all the consecutive 1-mm planes for each tumor. The Pearson correlation coefficient (r) between in vivo 3D perfusion parameters and ex vivo percentage area of blood vessels from the same mice was calculated. The number of animals for the three different experimental groups was determined through power analysis to minimize overall use of animals according to our institution’s guidelines. For experiments that assessed reproducibility, we expected an ICC of approximately 0.80 based on previous experience. Twenty-one pairs of measurements provided a 95% confidence interval of the ICC with an average length of 0.20, which is sufficiently narrow. For the two treatment groups, a minimum sample size of eight animals per group provided 80% power to detect a difference of ±1.50 between the antiangiogenic and control saline-treated group. All statistical analyses were performed with commercially available software (IBM SPSS, version 20; IBM, Chicago, Ill). P values of .05 or less indicated significance.

Results

Reproducibility of 3D DCE US Imaging

Overall, reproducibility of both DCE US acquisition techniques was good to excellent (Table 1). The different perfusion parameters measured twice during one imaging session were not significantly different obtained with both the bolus and destruction-replenishment DCE US acquisition techniques (P ≥ .16).

Three-dimensional DCE US Imaging for Assessment of Antiangiogenic Treatment

At baseline, tumor volumes in the control group (1740 mm³ ± 754) were not significantly different (P = .57) from those in the antiangiogenic treatment group (1843 mm³ ± 381). At 24 hours, tumor volumes were not significantly different (P = .94) between the two groups, with an average increase in volume of 18% ± 10% (P = .41) in the control group and by 9% ± 10% (P = .34) in the antiangiogenic treatment group.

By using both the bolus and destruction-replenishment DCE US imaging techniques, strong effects of the antiangiogenic treatment on several perfusion parameters were observed (Table 2, Fig 2). PE, AUC, rBV, and rBF significantly (P ≤ .04) decreased at 24 hours after antiangiogenic treatment, whereas TTP and blood flow velocity did not significantly change (P ≥ .58). In control animals treated with saline only, all perfusion parameters did not significantly change (P ≥ .38).

Comparison of 3D versus Quasi 2D DCE US Imaging

PE, AUC, TTP, rBV, rBF, and blood flow velocity obtained from multiple 1-mm 2D imaging planes reconstructed...
Table 1

Quantitative Values of Different Perfusion Parameters Obtained by Using the Bolus and Destruction-Replenishment DCE US Imaging Acquisition Techniques in Human Colon Cancer Xenografts Each Scanned Twice

<table>
<thead>
<tr>
<th>Parameter</th>
<th>First Acquisition</th>
<th>Second Acquisition</th>
<th>ICC</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE (au)</td>
<td>2.3 × 10^6 ± 2.4 × 10^6 (1.5 × 10^6, 8.0 × 10^6)</td>
<td>2.5 × 10^6 ± 2.4 × 10^6 (1.3 × 10^6, 6.9 × 10^6)</td>
<td>0.83 (0.70, 0.90)</td>
<td>.44</td>
</tr>
<tr>
<td>AUC (au)</td>
<td>1.0 × 10^7 ± 2.1 × 10^7 (3.0 × 10^7, 8.0 × 10^7)</td>
<td>8.0 × 10^7 ± 1.3 × 10^7 (3.0 × 10^7, 5.9 × 10^7)</td>
<td>0.83 (0.63, 0.93)</td>
<td>.25</td>
</tr>
<tr>
<td>TTP (sec)</td>
<td>28.4 ± 19.7 (5.5, 89.6)</td>
<td>24.8 ± 14.9 (7.7, 61.0)</td>
<td>0.73 (0.44, 0.88)</td>
<td>.22</td>
</tr>
<tr>
<td>rBV (au)</td>
<td>7.1 × 10^8 ± 4.8 × 10^8 (5.9 × 10^8, 1.6 × 10^8)</td>
<td>7.2 × 10^8 ± 5.3 × 10^8 (5.7 × 10^8, 1.9 × 10^8)</td>
<td>0.86 (0.71, 0.94)</td>
<td>.90</td>
</tr>
<tr>
<td>rBF (au)</td>
<td>1.9 × 10^8 ± 1.2 × 10^8 (3.8 × 10^8, 4.9 × 10^8)</td>
<td>1.9 × 10^8 ± 1.4 × 10^8 (2.3 × 10^8, 5.2 × 10^8)</td>
<td>0.83 (0.86, 0.92)</td>
<td>.84</td>
</tr>
<tr>
<td>Blood flow velocity (sec⁻¹)</td>
<td>0.041 ± 0.040 (0.009, 0.165)</td>
<td>0.034 ± 0.026 (0.004, 0.096)</td>
<td>0.86 (0.71, 0.93)</td>
<td>.16</td>
</tr>
</tbody>
</table>

Note.—P values refer to differences between first and second data acquisition. Data in parentheses are 95% confidence intervals.

Table 2

Percentage Change of Quantitative Values of Different Perfusion Parameters after Antiangiogenic and Saline-Only Treatment in Human Colon Cancer Xenografts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Antiangiogenic Treatment (n = 9)</th>
<th>Saline-Only Treatment (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage Change</td>
<td>P-Value</td>
</tr>
<tr>
<td>PE (au)</td>
<td>−63 ± 23</td>
<td>.004</td>
</tr>
<tr>
<td>AUC (au)</td>
<td>−55 ± 28</td>
<td>.04</td>
</tr>
<tr>
<td>TTP (sec)</td>
<td>−7 ± 42</td>
<td>.92</td>
</tr>
<tr>
<td>rBV (au)</td>
<td>−61 ± 26</td>
<td>.007</td>
</tr>
<tr>
<td>rBF (au)</td>
<td>−64 ± 23</td>
<td>.001</td>
</tr>
<tr>
<td>Blood flow velocity (sec⁻¹)</td>
<td>−4.5 ± 52</td>
<td>.58</td>
</tr>
</tbody>
</table>

Note.—Values are percentage changes from baseline to 24 hours after treatment. P values were calculated between baseline and 24 hours after treatment.

Discussion

This study indicates that 3D DCE US imaging with a clinical US imager and a clinical matrix array transducer is both feasible and reproducible and enables quantification of early antiangiogenic treatment response in a human colon cancer xenograft model. In particular, rBV and rBF, obtained by using the destruction-replenishment technique, correlate well with the percent vessel area measured by quantitative immunofluorescence used as reference standard. Our study also confirms substantial spatial heterogeneity of tumor perfusion and supports the use of 3D instead of 2D DCE US imaging to monitor antiangiogenic treatment response in cancer.

DCE US imaging is increasingly used in the clinic to assess treatment response and predict treatment outcomes in cancer patients (15,27–29). In 42 patients with advanced hepatocellular carcinoma treated with bevacizumab, 2D DCE US imaging correlated well with tumor response and progression-free survival (30). Furthermore, in 40 patients with metastatic renal cell carcinoma who underwent treatment...
Figure 2: Three-dimensional DCE US imaging shows antiangiogenic treatment effect in two representative human colon cancer xenografts by using bolus and destruction-replenishment DCE US imaging. A, After a single dose of bevacizumab, imaging signal (demonstrated on volume rendered displays at peak enhancement [left] and complete replenishment [right] at identical rendering settings) substantially decreased 24 hours after antiangiogenic treatment compared with baseline images by using both DCE US imaging techniques. B, In tumors treated with saline only, the imaging signal did not substantially change before and after saline treatment; yellow scale bar on US images is equivalent to 10 mm. Photomicrographs of CD31-stained tissue sections show decreased percent area of blood vessels in, A, antiangiogenic-treated compared with, B, saline-treated tumor (yellow scale bar on immunofluorescence images is equivalent to 100 μm).

Table 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Before Treatment</th>
<th>After Antiangiogenic Treatment</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>0.62 (0.38, 0.86)</td>
<td>0.53 (0.41, 0.66)</td>
<td>.67</td>
</tr>
<tr>
<td>AUC</td>
<td>2.18 (1.13, 3.22)</td>
<td>2.86 (1.90, 3.90)</td>
<td>.27</td>
</tr>
<tr>
<td>TTP</td>
<td>0.72 (0.31, 1.13)</td>
<td>1.27 (0.73, 1.81)</td>
<td>.05</td>
</tr>
<tr>
<td>rBV</td>
<td>0.51 (0.34, 0.67)</td>
<td>0.68 (0.46, 0.90)</td>
<td>.12</td>
</tr>
<tr>
<td>rBF</td>
<td>1.00 (0.22, 1.77)</td>
<td>1.05 (0.25, 1.62)</td>
<td>.13</td>
</tr>
<tr>
<td>Blood flow velocity</td>
<td>1.17 (0.21, 2.12)</td>
<td>0.90 (0.16, 1.64)</td>
<td>.58</td>
</tr>
</tbody>
</table>

Note.—Other than \(P\) values, data are coefficients of variation; data in parentheses are 95% confidence interval range.
EXPERIMENTAL STUDIES: Three-dimensional Dynamic Contrast-enhanced US Imaging for Treatment Assessment

Wang et al

make DCE US imaging a more robust and clinically applicable technique (15). Several 3D DCE US imaging approaches were recently introduced in preclinical studies. By using a linear motion with the exact same 2D plane to accurately monitor longitudinal perfusion changes, which is not possible in clinical practice (32). They also highlight that 3D DCE US imaging techniques are needed to make DCE US imaging a more robust and clinically applicable technique (15).

Figure 3: Box-and-whisker plots show spatial heterogeneity of tumor perfusion for all nine human colon cancer xenografts made visible with DCE US imaging before (black box plots) and 24 hours after (red box plots) antiangiogenic therapy. Three-dimensional data sets were retrospectively segmented into consecutive 1-mm data sets and logarithmically transformed perfusion parameters, including, A, PE, B, AUC, C, TTP, D, rBV, E, rBF, and, F, blood flow velocity, were plotted for each tumor separately. Each box in the plot represents the 25th and 75th quartiles, the line inside each box identifies the median, and the whiskers indicate the 5th and 95th percentile of perfusion parameter measurements. Outliers are represented by *. Note that there is substantial heterogeneity for all six parameters shown by the size of the boxes and the ranges of the values.

with an absolute variance of perfusion up to 22% in healthy rat kidneys (31). These results illustrate the dependence of 2D DCE US imaging on operator accuracy because the operator has to find
the y-axis is smaller with this approach than with mechanical sweeping, the transducer allows imaging at high spatial resolution and nearly constant voxel resolution in the whole imaging volume. By using both bolus and destruction-replenishment techniques, reproducibility of 3D DCE US imaging with the clinical matrix array transducer was found to be good to excellent for all perfusion parameters assessed.

We then tested whether 3D DCE US imaging allowed for early treatment response after antiangiogenic therapy in a human colon cancer model to be made visible by using both the bolus and destruction-replenishment techniques. Bolus DCE US imaging makes visible the temporal behavior of the contrast agent-induced signal after intravenous bolus injection of the contrast agent similar to DCE CT and DCE MR imaging (34,35). However, the destruction-replenishment DCE US imaging technique with constant infusion of contrast microbubbles to reach steady state does not have a CT or MR imaging analog and leverages the unique ability of US imaging to destroy the contrast agent microbubbles in the field of view. The rate of replenishment of microbubbles into the field of view after destruction is then captured and modeled by using standard indicator-dilution theory. Current models take advantage of the precise knowledge of the input function this method provides and the effect of the fractal geometry of the vasculature on the distribution of replenishment transit times (36). We found that four of six tested perfusion parameters, including PE, AUC, rBV, and rBF, significantly decreased 24 hours after a single dose of bevacizumab, while those parameters did not significantly change in saline-treated animals. Antiangiogenic treatment response was further confirmed ex vivo by estimating the percent area of blood vessels within each treated and untreated tumor by using quantitative immunofluorescence as a reference standard, and rBF correlated well with the percent area of blood vessels in our study.

Finally, we retrospectively assessed how the use of 2D instead of 3D DCE US imaging would result in different percentage of signal changes after antiangiogenic treatment. We found that, depending on the spatial location of 2D DCE US imaging within a tumor, treatment responses would substantially vary compared with 3D DCE US imaging. Depending on the perfusion parameter, those differences varied between sevenfold and 170-fold, and thus treatment responses can be both overestimated and underestimated compared with 3D DCE US imaging. For the central plane, which is usually chosen to assess treatment response in both preclinical (37) and clinical 2D DCE US examinations (15), treatment response was underestimated up to threefold and overestimated up to 57-fold.

Several limitations of our study need to be addressed. First, the number of animals in the different treatment groups was relatively small. However, strong differences between antiangiogenic and saline-only treated mice were measured. However, more confirmatory experiments are needed in additional tumor models and cancer types to further support our conclusions. Second, for this proof-of-principle study, we focused on the assessment of early antiangiogenic effects on 3D DCE US imaging signal 24 hours after treatment initiation and not over longer time intervals. Future studies are warranted in patients to assess whether early 3D perfusion changes quantified by 3D DCE US imaging are predictive of treatment response in patients with liver metastases from colorectal cancer. Another limitation is that relatively large amounts of fluid were injected, which could have influenced our results. Finally, the intra-animal comparison between 2D and 3D DCE US imaging was performed by retrospectively extracting quasi 2D data sets from the volumetric US data sets and not by prospectively imaging tumors by using both 2D and 3D DCE US imaging in the same animals. This approach was chosen for practical reasons because prospective imaging of tumors in multiple 1-mm increments would have resulted in injection of a large cumulative volume of contrast agent that is not tolerable for mice.

Our results suggest that 3D DCE US imaging with a clinical US system and matrix array transducer is

Table 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Underestimation (fold)</th>
<th>Overestimation (fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE (au)</td>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>AUC (au)</td>
<td>168</td>
<td>50</td>
</tr>
<tr>
<td>TTP (sec)</td>
<td>170</td>
<td>121</td>
</tr>
<tr>
<td>rBV (au)</td>
<td>40</td>
<td>78</td>
</tr>
<tr>
<td>rBF (au)</td>
<td>11</td>
<td>125</td>
</tr>
<tr>
<td>Blood flow velocity (sec⁻¹)</td>
<td>53</td>
<td>83</td>
</tr>
</tbody>
</table>

EXPERIMENTAL STUDIES: Three-dimensional Dynamic Contrast-enhanced US Imaging for Treatment Assessment

Wang et al
Three-dimensional Dynamic Contrast-enhanced US Imaging for Treatment Assessment

Wang et al

EXPERIMENTAL STUDIES:

Three-dimensional Dynamic Contrast-enhanced US Imaging for Treatment Assessment

Wang et al

EXPERIMENTAL STUDIES: Three-dimensional Dynamic Contrast-enhanced US Imaging for Treatment Assessment

Wang et al

References

Figure 4

Figure 4: Bar charts plotted for all six perfusion parameters show percent differences in antiangiogenic treatment effects based on data analysis of the central 1-mm plane versus analysis of the volumetric data set for each of the nine tumors treated with antiangiogenic therapy. Ratios of each perfusion parameter after and before antiangiogenic treatment obtained from the central 1-mm plane were compared with the ratios of the perfusion parameter after and before treatment obtained from 3D imaging, and percent differences were plotted. Note that treatment response can be either over-estimated or under-estimated when analyzing the central 2D plane only compared with volumetric data set.

Technically feasible and reproducible to assess tumor perfusion with both the bolus and destruction-replenishment technique. Furthermore, 3D DCE US imaging enables noninvasive quantitative measurement of antiangiogenic treatment effects as early as 24 hours after treatment initiation, which suggests that early antiangiogenic treatment effects can be assessed by 3D DCE US imaging before morphologic and anatomic changes of the tumor become visible.

Acknowledgements: We thank Vijay Shamdasani, PhD (Philips Healthcare, Bothell, Wash), for providing the clinical US system and transducer.

Disclosures of Conflicts of Interest: H.W. disclosed no relevant relationships. D.H. disclosed no relevant relationships. J.Q. disclosed no relevant relationships. J.K.W. Activities related to the present article: disclosed no relevant relationships. Activities not related to the present article: author received money for consultancy from Bracco and Triple Ring; author has grants from Siemens, GE Healthcare, and Philips. Other relationships: disclosed no relevant relationships.

Acknowledgements: We thank Vijay Shamdasani, PhD (Philips Healthcare, Bothell, Wash), for providing the clinical US system and transducer.

Disclosures of Conflicts of Interest: H.W. disclosed no relevant relationships. D.H. disclosed no relevant relationships. J.Q. disclosed no relevant relationships. J.K.W. Activities related to the present article: disclosed no relevant relationships. Activities not related to the present article: author received money for consultancy from Bracco and Triple Ring; author has grants from Siemens, GE Healthcare, and Philips. Other relationships: disclosed no relevant relationships.

References

